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Abstract. We describe a model-based motion filtering process that,
when applied to human arm motion data, leads to improved arm ges-
ture recognition. Arm movements can be viewed as responses to muscle
actuations that are guided by responses of the nervous system. Our mo-
tion filtering method makes strides towards capturing this structure by
integrating a dynamic model with a control system for the arm. We hy-
pothesize that embedding human performance knowledge into the pro-
cessing of arm movements will lead to better recognition performance.
We present details for the design of our filter, our evaluation of the filter
from both expert-user and multiple-user pilot studies. Our results show
that the filter has a positive impact on recognition performance for arm
gestures.

1. Introduction

Gesture recognition techniques have been studied extensively in recent years be-
cause of their potential for application in user interfaces. It has long been a goal
to apply the “natural” communication means that humans employ with each
other to the interfaces of computers. People commonly use arm and hand ges-
tures, ranging from simple actions of “pointing” to more complex gestures that
express their feelings and enhance communication. Having the ability to recog-
nize arm gestures by computer would create many possibilities to improve ap-
plication interfaces, especially those requiring difficult data manipulations (e.g.,
3D transformations). Pointing operations would certainly be an effective means
to infer directional information such as where to move an object in a computer
environment. To date no method has been found for arm gesture recognition
that is both very accurate and extendable to broad sets of gestures. Typical
approaches (e.g., HMMs, neural networks) have focused on applying analytical
methods for breaking down motion sequences and recognizing patterns.

The human model-based approach takes into consideration that while a per-
son is making gestures, the resulting motions and poses are played out by a
known, rather than an unknown, process. The gestures can be viewed as re-
sponses of a skeletal frame to muscle actuations that are made in response to
control signals originating in the nervous system. The structure of the skeleton,
joints, and musculature, is well known and well studied. The neural control sys-
tems that actuate the muscles are becoming better understood. With a solid
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model of human dynamics and control, much of the analytical heuristic guess-
work might be eliminated. The arm is a good subject for testing model-based
approaches because it is an articulated structure with well understood muscu-
lature and fairly large inertias that must have a significant effect on gesture
performance.

We have designed a motion adaptation filter for enhancing the signal lead-
ing to the gesture recognizer that integrates both physical and control models
of human gesture. Our technique uses two motion filters: one augmented with a
“learned” parametric gesture sequence and control system, and the other unaug-
mented. Our method for incorporating process knowledge—the model and its
dynamics—is the extended Kalman filter, though any process estimation filter
could be used that can handle non-linearities. The squared difference between
the outputs of both filters is computed and normalized, giving a score that can
be used by the recognition system.

Our working hypothesis is that the motion adaptation filter will improve the
unknown signal’s quality enough to improve or simplify the recognition process.
We tested the hypothesis by integrating the filter with a simple template gesture
recognition system, although our filter can be integrated with any standard type
of gesture recognition system. To determine the impact that our filter has on
arm-movement recognition performance, we tested the system with an expert
user performing multiple sets of gestures and with a multiple-user pilot study.

2. Related Work

Here we briefly describe the most common recognition methods and previous
related work utilizing human model-based approaches. More complete details
can be found in surveys by Watson [1], Aggarwal and Cai [2], Pavlovic et al. [3]
and our technical report [4].

2.1. Overview of Recognition Methodologies

The common methodologies that have been used for motion and gesture recog-
nition are: (1) template matching [1], (2) feature-based [1], (3) statistical [5], [6]
and (4) multimodal probabilistic combination [7]. By far the most popular recog-
nition methods are feature based neural networks (e.g., [8], [9], [10]) and statis-
tical hidden Markov models (HMMs) (e.g., [11], [12], [13]). Each approach has
drawbacks that either affect performance or limit usability. One of the major
drawbacks is that most depend on user-specific training and parameter tuning.

The template approach compares the unclassified input sequence with a set
of predefined template patterns. The algorithm requires preliminary work to
generate a set of gesture patterns, and usually has poor performance due to
the difficulty of spatially and temporally aligning the input with the template
patterns [1].

The neural network approach typically uses a pre-determined set of common
discriminating features, estimates covariances during a training process, and uses
a discriminator (e.g., the classic linear discriminator [14]) to classify gestures.



The drawback of this method is that features are manually selected and time-
consuming training is involved [1].

The HMM method is a variant of a finite state machine characterized by
a set of states, a set of observation symbols for each state, and probability
distributions for state transitions, observation symbols and initial states [5]. The
major drawbacks of the HMMs are: (1) they require a set of training gestures
to generate the state transition network and tune parameters; (2) they make
the assumption that successive observed operations are independent, which is
typically not the case with human motion [15].

In a multimodal recognition process, two or more human senses are captured
and/or two or more capturing technologies are combined. The multiple inputs
are processed by a classifier, which rates the set of possible output patterns with
a value based upon the likelihood of a match. The set of probabilities for each
input are then combined in a manner to be able to select the most likely pattern.
Many groups have explored combining speech and gesture (e.g., Cohen et al. [7],
Vo and Waibel [16]).

2.2. Methods Utilizing Human Model-Based Approaches

Human model-based approaches integrate a model of human motion, typically
approximated as a dynamic process and control system, into the process of fil-
tering motion capture data of human movements. Such a model-based approach
seems to have first appeared in Pentland and Horowitz [17]. Model-based ap-
proaches to motion generation for animation have been utilized by Zordan and
Hodgins [18], Metaxas [19] and others. Wren and Pentland [20] applied dynamics
to a 3D skeletal model for a tracking application. They applied 2D measurements
from image features and combined them with the extended Kalman filter to drive
the 3D model. Their resulting tracking system was able to tolerate temporary
image occlusions and the presence of multiple people in the tracked area. In more
recent work [21] they explored the notion that people utilize muscles to actively
shape purposeful motion. In earlier work [22], we explored the use of a simple
particle model for arm motion recognition performance.

3. Background

Here we give the background for methods that we utilized and integrated in the
design of our filter.

3.1. Extended Kalman Filter

The extended Kalman filter (EKF) [23] estimates both the time sequence of
states of an input data stream and a statistical model of that data stream.
The EKF differs from the standard Kalman filter [24] in that it can be used to
estimate a process that is non-linear and/or handle a measurement relationship
to the process that is non-linear. The EKF can be augmented by a dynamic
model of the system being tracked, and knowledge of the reliability of this model.
Simply described, the filter is a set of time update equations that estimate the
next state vector, current error covariance and the Kalman gain. The Kalman



gain affects the weighting of measurement data versus the control model in
determining the next state vector estimate. If the dynamic model is left out or
is unreliable, the Kalman gain is high and the filter simply smoothes the input
data.
The EKF’s prediction equations may be written
xi_-i-l = f(xiauiao) (1)
Pi_+1 = AzP,A;F + W,Q,WZT,
where f estimates the a priori state vector x;,,, as a function of the current
state vector x;, and the process model vector u; at the current time step. P; and
P, are the current and a priori estimated error covariances, (); is the process
model error covariance, A and W are the Jacobians of f with respect to the
state x and a vector of random variables w.
The filter’s update equations may be written

K; = P H] (H;P{ Hf + ViR;V;")™!
x; = x; + Ki(z; — h(x;,0)) (2)
f)i (I - KiHi)Pi_7

where K; is the current Kalman gain matrix, v is a vector of random variables,

h relates the state vector to the measurement vector z;, R; is the measurement
error covariance, and H and V are the Jacobians of h with respect to x and v.

3.2. Lagrangian Formulation for Dynamics

The Lagrangian formulation for dynamics is particularly appropriate for articu-
lated systems. The Lagrangian

L(q,q) = Ex(q,q) — Ep(q) 3)
is the difference between the kinetic energy Ej and potential energy FE, of the
system as a function of state q. The state is a set of generalized joint coordinates
and its rate q is a set of related velocities. The Lagrangian formulation for the
dynamics of a system is

doL 8L _ _ . _
an.i —a—ql =T, 1 = 1,...,m, (4)
where 7 is the set of externally applied or nonconservative forces and torques

[25].

Solutions to Equation 4 can be found in closed form, which are more efficient
and readily parameterizable than the open form derivations generated by the
Featherstone algorithm [26], which is a very efficient rendition of the Newton-
Euler approach to dynamics [27]. On the other hand, the open form derivations
do have the advantage that they can be easily extended to handle large sets of
joint-space configurations.

4. Motion Adaptation Filter

The design of our model-based motion adaptation filter is shown in Figure 1.
Its two extended Kalman filters each contain a model of the human arm and
its dynamics. Only one is augmented with a model of a control system acting
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on the arm. The input unknown motion sequence is passed through each filter,
compared and a score is computed, which is used as output for the motion
adaptation filter.

The unaugmented filter simply smoothes the input motion sequence. Since
it contains a control system, the augmented filter attempts to influence the raw
input motion sequence to follow a learned motion sequence. We illustrate this
notion in Figure 2 by showing five different motion sequences (arc, line, wave,
circle and angle) as influenced by a control system generating an arc. Each
sequence starts on the right side and proceeds towards the left. The darkest
grey line indicates the “influencing” arc sequence, the lightest grey is the input
sequence, and the mid-grey is the output sequence. The images show the degree
of influence that the arc controller has on each of the input sequences. The degree
of this influence is determined by the Kalman gain.

The unaugmented and augmented filters both contain units for motion state
estimation and dynamics update. The state estimation unit blends the input
motion sequence with the current state vector and passes the data to the dy-
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namics update process. There, forward dynamics are performed on the state
vector producing angular accelerations. These are numerically integrated gener-
ating the next state vector. The next state vector is fed back into the system at
the Kalman blend and sent to be compared with the output from the augmented
filter. The Kalman gain is updated from the current error covariance which is
subsequently updated by data from the dynamics update process.

The augmented filter’s control system is composed of a driving torque con-
troller and a blending function. Torques used by the controller are derived from
the parametric learned motion sequence and model and applied to the forward
dynamics of the system. After numerical integration, an intermediate state vec-
tor is passed to the blending function where it is mixed with the aligned and
parameterized learned motion sequence producing the next state vector. The
motivation behind the augmented filter is that if the input motion sequence
matches closely to the learned motion sequence (e.g., in Figure 2 the arc in
arc module), then the resulting trajectory should be very similar to the input.
Thus the trajectories output by the unaugmented and augmented filters will be
nearly identical, and the output score will be small. However, if the input motion
sequence is dissimilar (e.g., in Figure 2 the line in arc module) to the learned
sequence, the trajectories will differ greatly and likewise the score will be large.

4.1. Arm Model

A dynamic articulated model of a human arm is integrated into the filter. The
arm model consists of a 3-DOF shoulder joint, a 1-DOF elbow joint and cylinder
linkages between the shoulder and elbow, and between the elbow and wrist. The
model is shown in Figure 3. We ignore the wrist twist in the lower arm. We also
capture the three degrees of freedom for the torso, which is used to produce a
relative coordinate system for the arm. The three degrees of freedom from the
torso are eliminated after the coordinate transformation takes place between the
torso and shoulder.

The position of the wrist and elbow can be determined by using the kine-
matics equations of motion for the arm model. The equations are parameterized
using joint angles for each degree of freedom of the joints in the model. They are

xE = (=luSeCy, —luSpSs, —luCh)T, ()
Xw = Rz(¢)Ry(0)(_lLSpCaa _lLSpSaa _lLCp)T;



where xg and xw are the positions of the elbow and wrist, respectively, [y and
I, are the corresponding lengths of the upper and lower arm, R, (¢) and R,(9)
are rotation matrices about the respective axes z and y, and S and C are sines
and cosines of angles of rotation 6, ¢, a and p.

4.2. Motion State Estimation

Motion state estimation is used to predict the state vector at the next time step
for the current state of measured input, dynamic model and statistical models of
the measured and control systems. The statistics for the measurement process
and control system are in the form of error covariance matrices and are pre-
determined using training and measurements from the user workspace. They are
used by the EKF along with data from the dynamics update process to determine
the current Kalman gain.

The Kalman gain is critical for state estimation in the system and requires
knowledge from the dynamics and measurement processes. These data include
the four (8x8)-Jacobian matrices A, W, H and V from Equations 1 and 2, which
relate the process and measurement system’s state vectors to the current state
vector. The analytic equations for the elements of these matrices are predeter-
mined and their values updated as the filter operates. They are

[ 1 t 1 t
A= |,0g og |, W = 99 Og
toq 1 ttaq tow; 't tows

and H =V = I where I is the 8x8-identity matrix. The matrices A and W
are updated by taking the partial derivatives with respect to the current state
vector of their respective complete forward dynamics equation g. The augmented
and unaugmented filters have different formulations. The formulation for the
augmented filter is

g(q7q7w17w2) = Bl_l[%(q_{_w2)T%[‘BI](q+w2)_ (6)

B,(q + W2) + T(qm7 qm)]7

and for the unaugmented filter is

g(q7q7w17w2) = B,_l[%(q_{_w2)T%[BI](q+w2)_ (7)
B'(q+ wa)],

where w; and wy are vectors of random variables representing “white” noise
with zero mean and constant variance associated with the process model’s state
vector and velocities, respectively. B and B are the inertia matrices defined in
Section 4.3 composed of members from the state vector q and angular velocities
4. B’ and B' are similar matrices to B and B but wherever an element of q and
q appears, the appropriate random variable from the vectors wi or wy is added
to that member. For example, if 8 appears in an element of matrix B, then in
B’ it is replaced by 6 + w1, the first element in the vector wy, since € is the
first element in q.

4.3. Dynamics Update

The dynamics update process provides parameter updates for motion state es-
timation and the control system. It takes the current state of the system and



the arm model (and a set of torques for the augmented filter), and performs
forward dynamics to produce the parameter update functions g (described in
Section 4.2) and the angular accelerations ¢. Our experiments showed that Eu-
ler numerical integration [28] was adequate for updating the next state vector
using the accelerations.

The forward dynamics equation for the 4-DOF articulated arm model gen-
erates the angular accelerations and is used to derive the complete forward dy-
namics equations (Equations 6 and 7). In order to derive these equations, the
masses, lengths and moments of inertia of the arm segments are needed. Each
arm segment is represented by a thin cylinder rotating about its endpoint. The
center of mass for each cylinder is estimated using data from a study on anthro-
pometric parameters for the human body in [29]. The data gives estimations for
the segmental center of mass (COM) locations expressed in percentages of the
segment lengths. These are measured from the proximal end of the segments.
The moment of inertia for each segment is computed by combining the inertia
tensor of the representative cylinder body and inertial component associated
with the shift of its COM to the endpoint. The inertial components associated
with the shift of the COM are

xv = (-ruS6Cs, —TuSsSs, —ruCo) 7, ®)
xr = R.(¢)Ry(0)(—rLS,Ca, —7LSySa, _TLCP)T:

where xy and xp are the positions in Cartesian world space of the estimated
COMs of the upper and lower arm, respectively, and ry and rp are the cor-
responding radial distances from the shoulder and elbow, respectively. Time
derivatives are taken to get the angular velocities at the estimated COMs of the
arm segments. These are

Xi = Jiq, i ={U,L} 9)
where the Jacobian matrices Jy = 85%!” and J = %, and ¢ = (8, ¢, ¢, p)7.
The inertial components are

Iy = myJE Ju + Ibodyy,

I = meJ Ty + Ibodyr, (10)

where Iy and I, are the inertial components of the upper and lower arm, respec-
tively, my and my are the estimated masses of the arm segments, and Ibodyy
and Ibodyy are diagonal matrices representing the thin cylinder body inertias
about each parameterized of the axes 6, ¢, a and p. The elements in Ibodyy
and Ibodyy are determined by converting the cylinder’s Euclidean coordinates
to spherical coordinates.

The angular velocities and inertias are used to compute the kinetic energy

Ey = %qTBQ: (11)
where B = Iy + I,. The potential energy is given as

E, = —mygryC

—mrg[luCy — rSrCoSt + r.CCr), (12)



where g is the gravitational constant. The two energy terms are used for the
Lagrangian, L, of Equations 3 and 4. The dynamics equations are computed
and solved for angular acceleration

i =B '[3¢" Z[Bld - Bi+1], (13)
where 7 is the set of applied torques.

4.4. Control System

Our control system acts as an analogue to the motor nervous system in the
human body, influencing how the learned motion sequence acts on the current
motion state. It is composed of a driving torque controller and a blending func-
tion. The driving torque controller uses data from the learned motion sequence
and arm model and performs inverse dynamics, which generates torques for the
dynamics update process. The blending function combines the learned motion
sequence with an intermediate state vector from the dynamics update process.
The degree of its influence is controlled by a fixed predetermined blending fac-
tor. The learned motion sequence also remains fixed throughout the iteration
of the filter. We see the driving torque controller as analagous to an open-loop
predictive control and the blending function as analagous to proprioceptive and
sensory feedback. Our control system has similarities to the model reference
adaptive control (MRAC) system presented in [30], [31], which incorporates a
reference model of a motion sequence, inverts its dynamics and applies the re-
sulting torques in a controlled manner to the input data.

The torques for the driving torque controller are computed using the inverse
dynamics torque formulation

T(q,q) = 7(¢™, ™) + 54" 2 Bq — By. (14)
where 7 is the vector of applied torques from the controller, and joint angles g™
and angular velocities ¢™ are from the influencing gesture sequence. The joint
configurations are transformed so that they correlate with the learned model’s
joint configurations.

Since there is no feedback in the driving torque controller, the torques can be
precomputed. When T'(q, ¢) is applied to the dynamics it influences the motion of
the model to follow a trajectory analogous to the influencing sequence. However,
it is not necessarily strongly influencing the raw motion data to move towards the
learned motion sequence. The strength of the influence is controlled by a scaling
parameter k. that is applied to the Kalman filter’s process model error covariance
matrix ). This affects how much the system “trusts” the raw motion data versus
the dynamic model. As k. changes it directly impacts how the reported controller
error relates to the measurement error in the system. As a result, the Kalman
filter’s gain matrix K (Equation 2), stabilizes differently, therefore changing how
the Kalman filter weights input motion versus controller influence.

The blending function supplements the driving torque controller by providing
more guidance to the state estimation. The driving torque controller provides the
dynamics drive for the model, but it does not always provide sufficient guidance.
The influencing motion sequence’s torques may be nonlinear with respect to the
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joint configurations, but the tracking system performs blending of joint config-
urations linearly. Therefore, due to linear blending, small changes in the joint
configurations can produce large changes in the dynamics. This directly affects
how the driving torque controller performs. The blending function is intended
to counteract this effect.

The blending function incorporates the current state of the system with the
raw motion data from a learned motion sequence. The raw motion data includes
the joint angles and angular velocities. This data is linear with respect to the
motion state configurations of the system. The blending function that we use is

where X; = [qa(j]Ta Xz = [q'7q.]T7 X;n = [qmqu]T7

and b is the blending factor.

At is the current time step,

5. Analysis of Filter

In order to test its effectiveness, we implemented our new filter, selected a
difficult—to—discriminate gesture dataset, and ran user studies.

5.1. Design of Test System

We designed a system to test the motion adaptation filter by adapting a sim-
ple template-style gesture recognizer. We chose the template recognition system
because it is easy to implement and is very easy to understand. However, our
filter can work with most standard recognition architectures with some minor
modifications (e.g., see notes in Section 7). The template architecture works by
comparing the unknown input sequence with each gesture pattern. For our case,
the unknown input is passed through a motion adaptation filter associated with
each gesture (see Figure 4 for an overview).

Human motion data is brought into the system by a motion tracking unit
and segmented by searching for long pauses in the motion sequences. The choice
of tracking system is arbitrary, as long it can generate a continuous sequence
of motion states. For this architecture, the output is distributed in parallel to
N copies of the filter. Each of the filters is custom-tuned for a specific gesture.
The output of the filters is a set of scores that are processed by the recognition
unit. The scores are the squared differences of the internal unaugmented and
augmented filters.

Although our filter can accept tracking data from any motion capturing tech-
nology, for purposes of testing we found it convenient to use a magnetic tracking
system. There are obviously more accurate input technologies (e.g., acoustic
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and inertial) and vision systems, but due to occlusion, they do not guarantee a
continuous reliable stream of input.

We capture orientations of the lower arm, upper arm, and torso to to retrieve
the required four Euler angles. We estimate angular velocities using time differ-
ence methods. The set of angles and angular velocities makes up a motion state
vector. The sequence of state vectors is sent to the motion state estimation unit.

5.2. Selection of a Hard-to—Discriminate Gesture Dataset

Our first step for analyzing the performance of the filter was to select a set of
gestures that are hard to distinguish from each other. The selection criterion was
determined by observing trajectories of the wrist for each gesture. The trajec-
tories for the gesture dataset we selected for the introductory experiments are
shown in Figure 5. This gesture set has many overlapping features, as can be
seen in Figure 6. Two distinct gestures that have overlapping motion segments,
especially if they start with the same motion sub-sequence, are more difficult
to distinguish than dissimilar nonoverlapping gestures. A properly tuned EKF
bases its initial output more on the input data than the dynamic model. But,
when it converges to a stable blending state, the dynamics of the system takeover.
If two gestures have similar starting trajectories and abruptly change after the
dynamics become more dominant, the system will initially fail to discriminate
between the two gestures because the derived dynamics of the system are sim-
ilar. Eventually the mixture of the two dissimilar segments of the gestures will
influence and change the system behavior.

For our experiments, we also considered the direction in which the motion was
performed, thus expanding the five basic shapes to ten. We used combinations
of the five basic shapes to generate gesture datasets and test the performance,
generalizability and extensability of our approach in four of five expert—user
experiments.

5.3. Filter Parameters

Our filter requires a set of parameters that must be predetermined and tuned for
individual gestures. The EKF requires error covariance data for the measurement
and control processes. The dynamics update requires measurements from the
user’s arm. Each control system requires a blending constant and a learned
motion sequence.



Parameter Determination To compute the measurement error covariance
we affixed three motion tracking receivers in the user workspace to a stationary
configuration analogous to that of the right arm. We recorded 1000 samples
continuously and computed the error covariance matrix computed using the
sampled angles and estimated angular velocities. The measurement covariance
matrix needs to be computed once for a given combination of hardware and
workspace.

The control process error is computed by using the pre-recorded gesture se-
quences. A parametric learned motion sequence for each gesture type is selected
by determining the closest fitting trajectory to a normal trajectory that is com-
puted from the sample set of gestures. The error matrix is estimated using the
mean squared error between the parametric learned motion sequence and the
rest of the sequences. The control error needs to be computed for every gesture
sequence.

Subject Measurements Some of the parameters needed for the filters are
taken from measurements of the users. The filters require the lengths, radii and
masses of the upper and lower arm. These parameters are obtained by combina-
tions of two methods: direct measurements and estimation from anthropometric
parameters of the human body. The lengths are determined by either directly
measuring the distance between the shoulder and elbow, and elbow and wrist,
or estimating them from the height and sex of the user. Estimations of anthro-
pometric parameters are made according to the procedure outlined in Hall [29].
The radii are obtained by measuring the circumferences of the arm segments at
the midpoint. The masses for the arm segments are determined as percentages
of the whole body mass for males and females.

Parameter Tuning In order to use the EKF, specific parameters have to be
tuned in order to get desirable guidance in the recognition units. One of the
parameters that needs tuning is a multiplicative factor k. used to scale the
augmented filter’s control error covariance. There is one such scaling factor for
each control error covariance matrix. The scaling factor is used to adjust the
level of “trust” in the filter by changing the control error with respect to the
measurement, error. The larger k. is, the more the filter output depends on the
input. The smaller k. is, the more the filter output depends on the controller and
dynamic model. As a result the Kalman gain matrix, essential for the Kalman
blend, changes. A similar single parameter is adjusted for the unaugmented filter.

Another parameter to be tuned is the blending factor b. This is applied in the
blending function, which performs a blend of the intermediate state vector x4
and the parametric learned motion sequence. This factor is important because
it weights how the raw data is blended with the parametric learned motion
sequence. The Kalman blend does not directly incorporate knowledge of the
parametric learned motion sequence. We used one blending factor for all the
gesture types. More details about the choice-of and tuning of these parameters
is described in our technical report [4].

An important consideration when selecting the parameters is the degree of
alignment of the input gesture with respect to the learned gesture. In the exper-



iments, we ask the users to extend their right arm perpendicular to the chest.
The gestures they are asked to perform are then roughly centered around that
hand position. Rough alignment and scaling is applied to the parametric learned
gesture in addition to the parameterizing that is necessary to perform a match-
ing comparison. This is the registration phase, which can be seen on the right
side of the filter diagram in Figure 1. If the parametric learned gesture does not
align very well with the gesture it is supposed to accept, it creates a high score
for the comparison. This is due to our method for evaluation which compares
the augmented and raw input trajectories. If the alignment is extremely bad we
could not adjust the k. parameter to “trust” the model as much. In most cases
this is not a problem, but for a difficult dataset to recognize, such as the basic
five gestures in Figure 5, some gestures will be improperly classified.

Sensitivity Analysis If we were to run a full user study on human subjects of
widely varying mass and height, it would be important to understand how much
of an impact parameter changes have on the dynamics of the system. If it can be
shown that the system is relatively insensitive to changes in the parameters then
it may be considered to be more generalizable and potentially more powerful.
We analyzed the sensitivity of a few of the body parameters (summarized in
Schmidt [32]), but did not determine enough meaningful information to make
conclusions about the generalizability of our filter.

5.4. Expert User Experiments

We set out to verify the effectiveness of the filter integrated into a gesture rec-
ognizer by devising a set of experiments to be performed by an expert user.
These were designed to test the performance of the recognizer with and with-
out our filter. We also wanted to ascertain something about how generalizable
and extensable our filter is with respect to different and larger gesture datasets.
To accomplish these goals, we ran five experiments. Before beginning, we pre-
recorded a database of gestures from the user, computed the parameters and
learned models, and performed manual parameter tuning.

Accuracy Performance The purpose of the first experiment was to determine
the performance rating of the recognizer integrated with and without our filter.
We used the five gestures from Table 1, and recorded 100 samples for each
gesture. The gestures were first aligned with the learned motion sequences, then
the learned motion sequences were parameterized to match the size of the input
sequence. We supplied both the filtered (our method) and unfiltered recognizers
with the 500 gestures. The results are given in Table 1.

They show that both methods have an accuracy rating of 99.4%. The fact that
both methods produced acceptable results turned out to be only coincidental
for the unfiltered approach, which was later shown to be very inconsistent. We
analyzed this dataset further and noticed that the gestures were fairly spatially
regular with respect to each other. For example, there was not an extensive
amount of variation due to alignment, skewing and scaling among the like ges-
tures in this set.



Table 1. Results of Experiment #1
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b) Arcin Arc Module

Fig. 7. Arm Model Motion in Time

To get a better idea of how our method works, refer back to Figure 2. The
arc in the arc module shows the best match between the augmented and the
unaugmented (effectively the learned motion sequence) trajectories. The rest of
the cases show that the learned arc sequence has a large influence on the data
running through the augmented filter which is evident by the output augmented
trajectories. This effect pulls the augmented and raw data curves apart. The
sequences in Figure 7 illustrate a small set of state transitions from the three
arm models used in generating the trajectories for the line and the arc in the
arc module. The figures show frames from a 3D simulation of the corresponding
schematic 4-DOF arm models. The arm states are very similar for the arc in the
arc module, but very different for the line in the arc module.

Generalizability To test the generalizability of our approach, we ran a second
experiment. In the experiment we used the reverse-order wrist trajectories from
the gestures used in the first experiment (a completely unique dataset). We
recorded 100 samples for each of the five gestures and purposely added noise



into the samples to test the robustness of our filter. Then we passed them into
the gesture recognizer twice, with and without our filter in the system. The
resulting performance ratings are given in Table 2.

Table 2. Results of Experiment #2
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In this case, the accuracy of the recognizer integrated with our filter proved to
be far superior than without it. The performance rating for our filtered approach
is 98.8%, while the unfiltered is 79.8%.

Extensibility For the third experiment, we examined the extensibility of our
approach. To do this, we increased the number of distinct gestures that the
recognizer had to distinguish. We used the two sets of gestures from the first
two experiments and combine them into one database. Although diagrams make
the two gesture sets appear similar, the motions that the human subject has
to perform with the arm are totally different. When we performed the same
experimental procedure as before, the results show our method has an accuracy
rating of 99.1% while the unfiltered approach has a rating of 89.6%. This gives us
a good indication that our method is extensable to larger size gesture datasets.

More Generalizability Experiments At this point we decided to revisit the
first experiment with the hope of making it more difficult to distinguish the
gestures than before. The goals of the fourth experiment were to show more
generalizability with our method. In order to do this, we replaced the line and
the wave with a triangle and another form of the arc. The new arc gesture is
generated using a bend at the elbow instead of the straight arm motions used
for the original arc. By our definition of arm gestures (i.e. movements of the arm
that may or may not have any meaningful intent) and our analysis of only the
“end-effector” position of the arm at the wrist, we do not make any distinction
between the new and old arc gesture since both have identical wrist trajectories.
The triangle gesture resembles the angle gesture in the first time steps, but
deviates from it near the end. Our assumption was that this choice of gestures
would be harder to discriminate. 75 trials were run for each gesture.

The experimental results show that the new gesture set was a bit harder to
recognize by both methods. The triangle and bent-arm arc were recognized 90.7%
and 86.7%, respectively for the unfiltered approach, and 98.7% and 96.0% for
our approach. Our filtered approach showed an overall accuracy rating of 98.1%
compared with the unfiltered approach’s rating of 95.2%. The results were again



encouraging with regard to our method’s consistency and accuracy, and also that
it generalizes to different gestures quite well.

For our fifth experiment we ran 50 trials with five new gestures, each sig-
nificantly different from the others. In addition, we decided to make a choice of
somewhat natural gestures. The goal of the experiment was to determine if our
method works well with gestures that are very easy to distinguish because they
are quite distinct and are more natural. Our choices included the “zorro” sign,
Catholic cross, salute, wave, and stop gestures. Diagrams of the motions of the
wrist and results of the experiment are shown in Table 3.

Table 3. Results of Experiment #5

I [
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The results show that our method was 100% accurate on this gesture set,
while the unfiltered approach achieved an accuracy rating of 98.4%.

Discussion In the experiments, we evaluated the accuracy performance, gener-
alizability and extensability of our filter when integrated in a recognition system.
We made steps to ensure that it was difficult to distinguish among gestures by
carefully selecting gesture datasets with overlapping motion traits. When com-
pared with the recognizer with no filter attached, our method showed improved
recognition performances. Our results from the five experiments show that our
method is consistently accurate with rates ranging from 98.1% to 99.4% and
extends to multiple gesture datasets. This compares very favorably with the
unfiltered method whose accuracy ranged from 79.8% to 99.4%.

6. Pilot Study

We performed a pilot study involving six different subjects, in order to evaluate
our model-based approach across different subjects.

6.1. Subject Selection

For the experiment, we selected three males and three females, with varying
anatomical proportions. The sex discriminant was desired to accommodate for
potential differing mass distributions in the arm between male and female sub-
jects, based on muscle and bone proportions. The proportions we were concerned
with were the lengths, radii and masses of the upper and lower right arm. The
subjects were selected without regard to ethnicity, age, social or cultural back-
grounds. The only screening requirement we had was a visual observation of size
proportions in order to assure a subject pool of varying anatomical proportions.
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Fig. 8. Comparison of the Unfiltered and Filtered Approaches

6.2. Subject Measurements

The subjects had body weights ranging from 55 to 87 kg and heights ranging
from 1.6 to 1.9 m, giving us a broad spectrum of masses and lengths for the
user’s arm proportions. The upper arm lengths varied from 28 to 36 cm and the
lower arm lengths from 23 to 27 cm. The upper arm radii varied from 3.66 to
5.25 ¢cm and the lower arm radii from 3.18 to 4.38 cm. Trackers were attached
using velcro straps at the wrist and near the elbow. A third was affixed with
tape to the shoulder.

6.3. Pilot Experiment

In the first subject experiment our goal was to compare the difference between
augmenting the recognition process with a model versus not augmenting the
process. The subjects were asked to perform 25 trials of each of five different
gestures, using the right arm. In between each set of trials for one gesture, the
subject was given ample rest time to help avert any fatigue associated with the
repetitive motions they were asked to make. We used the same five gestures as
illustrated in Table 3, the zorro, Catholic cross, stop, salute and waving gestures.

The results we obtained were measurements of how well each recognition sys-
tem predicted the correct gesture sequence. The performance rating for the two
methods—the unaugmented and our model-based approach—were computed by
averaging the performances for each of five different gestures. The performance
for each gesture was computed by averaging the results from each of the six
subjects. The histogram chart shown in Figure 8 compares the two sets of data.

The data for each user was analyzed by setting the body parameters for the
recognizer to their measurements before running the accuracy tests. The rest
of the parameters for the recognizer were individually tuned for each subject.
The results for our model-based approach show an overall acceptance rate of
98.7% with standard deviation of 1.0%. The unaugmented approach performed
at 93.5% acceptance rate with standard deviation of 3.7%. The high acceptance
rate and low variability that our results show give us a fairly good indication that
integrating our filter into the recognition process improves recognition accuracy.



A drawback of this experiment is that a significant amount of custom param-
eter tuning was required for each subject. As a result, we decided to evaluate
whether or not our methodology would allow us to reduce the tuning effort re-
quired by each experiment. We ran a set of followup experiments to test these
ideas. The results were somewhat limited. More details can be found in our
technical report [4].

7. Discussion and Conclusions

We have developed a new model-based filter that incorporates a dynamics model,
a control system and motion state estimation and applied it to the gesture recog-
nition process. The dynamic model gives us a way to represent the underlying
mechanical motion of the human arm. The control system acts as a means to
exert control over and provide guidance for the motion applied by the dynamics.

Our filter proved to be effective in improving the performance of the recogni-
tion process as shown by our expert-user and pilot user studies. We showed this
by comparing an unfiltered recognition process with one augmented with our
model-based filter. Our method works acceptably well for hard—to—distinguish
gesture sets and even better for very dissimilar sets. The results definitely war-
rant, further user evaluation studies.

Our method does involve a small amount of parameter tuning and training
for the error covariances. A lot of the tuning is associated with the registration
of the input and learned gestures. Obviously, if the registration problem can be
solved, a lot of the tuning can be eliminated. It also might be the case that more
sophisticated models for the human motion or a more extensive model of the
human body would reduce the need for some of the parameters.

One issue that our work did not address is the differences that may occur
with people tracing the same “end-effector” path with different arm and joint
configurations. For example, the “bent-arm” arc used in the fourth expert-user
experiment has an equivalent wrist trajectory as the “straight-arm” arc had in
the first experiments. We analyzed only the wrist trajectories, although we could
have additionally analyzed either the elbow or joint configuration trajectories.
This in effect increases the size of the gesture alphabet.

We only tested our filter with a template recognition architecture. However,
we feel that it can be easily modified for use with a neural network recognizer. By
removing the unaugmented sub-filter component the only output would be the
augmented filtered sequence. If we setup = filters so that each input to the system
produces 7 output sequences from the filters (for n distinct gesture patterns),
each of these outputs will be different amongst themselves but fairly unique for
each given input pattern. Then, extracting features from each output sequence
which could yield m x n different features for the neural network. If desired, more
features could be added from the raw or unaugmented filtered input sequence.
The rest should follow the same as any neural network. The advantage of this
(untested) setup would be that the filter could be used to generate many more
unique discriminating features. While this is not always an advantage, if the



features are good discriminating ones we believe the discriminator should me
more powerful.

Based on our evaluation studies, we can conclude that our motion adaptation

filter makes a positive contribution to the performance of gesture recognition for
arm-based gestures. This seems to imply that a model of human performance
can be used to eliminate some of the heuristic guess-work that must be done to
make a standard gesture recognizer work.
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